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MEASURING WHAT PEOPLE DO ONLINE WITH DIGITAL TARCES web

The importance of measuring what people do online opp

 Increased importance of understanding the extent and the type of media/content people
are exposed to

« As well as its effect on how people think, feel, and behave
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Wise governments will take a leaf out of the anti-vaxxers' book
by creating campaigns that persuade through engagement

& Abstract

This study examines the effect of contraceptive knowledge on fertility during the period when
Taiwan’s family planning programs were in effect. This study contributes to previous studies
by directly measuring individual’s contraceptive knowledge and fertility, as well as applying an
instrumental variable approach to gauge the effect of contraceptive knowledge on fertility. The
results indicate that mass media and social networks play important roles in disseminating

contraceptive knowledge. This study finds that women transform their knowledge into

behavior—that is, contraceptive knowledge reduces fertility, no matter which fertility metric is

measured (life-time fertility or probability of giving birth).
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Digital trace data to understand online behaviours

 Survey self-reports are still the most common approach

The Immensely Inflated News Audience: Assessing
Bias in Self-Reported News Exposure

Markus Prior

Public Opinion Quarterly, Volume 73, Issue 1, Spring 2009, Pages 130-143, https://doi.org
/10.1093/pog/nfp002
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Abstract

Many studies of media effects use self-reported news exposure as their key
independent variable without establishing its validity. Motivated by anecdotal
evidence that people's reports of their own media use can differ considerably
from independent assessments, this study examines systematically the
accuracy of survey-based self-reports of news exposure. I compare survey
estimates to Nielsen estimates, which do not rely on self-reports. Results show
severe overreporting of news exposure. Survey estimates of network news
exposure follow trends in Nielsen ratings relatively well, but exaggerate
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Digital trace data to understand online behaviours

 Survey self-reports are still the most common approach

« More and more availability of digital traces to directly observe media exposure
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Individual-level approach: web trackers

Direct observations of online behaviours using tracking solutions, or
meters.

’

Group of tracking technologies (plug-ins, apps, proxies, etc)

!

Installed on participants devices

J

Collect traces left by participants when interacting with
their devices online: URLS, apps visited, cookies...

Great, we will get unbiased
measures!

Ofrecido por Google en:
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Is web tracking data actually unbiased?

Little but growing evidence that web tracking data is
affected by errors
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Abstract

Metered data, also called web-tracking data, are generally collected from a sample of
participants who willingly install or configure, onto their devices, technologies that track
digital traces left when people go online (e.g., URLs visited). Since metered data allow for
the observation of online behaviours unaobtrusively, it has been proposed as a useful tool
to understand what people do online and what impacts this might have on online and
offline phenomena. It is crucial, nevertheless, to understand its limitations. Although
some research have explored the potential errors of metered data, a systematic
categorisation and conceptualisation of these errors are missing. Inspired by the Total
Survey Error, we present a Total Error framework for digital traces collected with Meters
(TEM). The TEM framework (1) describes the data generation and the analysis process for
metered data and (2) documents the sources of bias and variance that may arise in each
step of this process. Using a case study we also show how the TEM can be applied in real
life to identify, quantify and reduce metered data errors. Results suggest that metered
data might indeed be affected by the error sources identified in our framework and, to
some extent, biased. This framework can help improve the quality of both stand-alone
metered data research projects, as well as foster the understanding of how and when
survey and metered data can be combined.
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Is web tracking data actually unbiased?

Little but growing evidence that web tracking data is
affected by errors

We know that these errors can introduce measurement
errors of a considerable size
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Is web tracking data actually unbiased?

Little but growing evidence that web tracking data is
affected by errors

We know that these errors can introduce measurement
errors of a considerable size

But still not near what we know about surveys!
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Is web tracking data actually unbiased?

Little but growing evidence that web tracking data is
affected by errors

We know that these errors can introduce measurement
errors of a considerable size

But still not near what we know about surveys!

My pitch: adapt decades of knowledge in psychometrics and
survey methodology to improve how we use digital trace data
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Simultaneously estimating the measurement

quality of digital trace data and surveys using
MultiTrait-MultiMethod (MTMM ) models



SIMULTANEOUSLY ESTIMATING THE MEASUREMENT QUALITY OF DIGITAL TRACE DATA AND SURVEYS USING MULTITRAIT-MULTIMETHOD (MTMM) MODELS

Measurement quality

Quality = part of variance explained by the latent
concept of interest

- complement of measurement errors

Quality = reliability x
measurement validity

» @z true score for 11 point scale

l Reliability coefficient

: observed response 11 point scale

Quality = strength of the

relationship between the
latent concept of interest
and the observed answers
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Science &
techno. news
(F3)

Political News
(F4q)
Sports News
(F2)

Metered (M,)

Residuals are not shown for ease of reading




SIMULTANEOUSLY ESTIMATING THE MEASUREMENT QUALITY OF DIGITAL TRACE DATA AND SURVEYS USING MULTITRAIT-MULTIMETHOD (MTMM) MODELS

The model

Science &

Political Mews
(. techno. news
i 1.- |:F3:|

Sports News
(F2) Three similar traits

Metered (M,)

Residuals are not shown for ease of reading




SIMULTANEOUSLY ESTIMATING THE MEASUREMENT QUALITY OF DIGITAL TRACE DATA AND SURVEYS USING MULTITRAIT-MULTIMETHOD (MTMM) MODELS

The model

Science &

Political Mews
(. techno. news
i 1.- |:F3:|

Sports News
(F2) Three similar traits

Two methods to
measure these traits

_

Metered (M,)

Residuals are not shown for ease of reading



SIMULTANEOUSLY ESTIMATING THE MEASUREMENT QUALITY OF DIGITAL TRACE DATA AND SURVEYS USING MULTITRAIT-MULTIMETHOD (MTMM) MODELS

The model

Science &

Political Mews
(E.] techno. news
i 1.- . |:F3:|

Sports News
(F2) Three similar traits

Rehablhty ° °

¥11

Two methads to

measure these traits

4

Metered (M,)

Residuals are not shown for ease of reading



SIMULTANEOUSLY ESTIMATING THE MEASUREMENT QUALITY OF DIGITAL TRACE DATA AND SURVEYS USING MULTITRAIT-MULTIMETHOD (MTMM) MODELS

The model

Science &

Political Mews
(E.] techno. news
i 1.- |:F3:|

Sports News
(F2) Three similar traits

Woade = ol ™

admin & survey data. Or more recently Cernat and colleagues
for digital trace data & surveys.

4 Others have already considered similar (but different)
o approaches like this. For example, Oberski and colleagues, for

Reliability

Two methads to

measure these traits

4

Metered (M,)

Residuals are not shown for ease of reading



This study



THIS STUDY

Research questions




THIS STUDY

Research questions

What is the overall validity, reliability, method effect and measurement quality of several
measurements computed with digital trace data? (RQ.1)

And how do these compare with the quality estimates from equivalent survey questions? (RQ.2)




THIS STUDY

Data

Survey combined with web tracking data at the individual level

Netquest metered panel in Spain
» Cross-quotas: gender, age, and education
« Sample size: 1,200
* Fieldwork: Late May — Early June 2023

Tracking technologies installed in both mobile and desktop devices

Part of the ERC project WEB DATA OPP




THIS STUDY

Three differ groups of traits of interest

1. News exposure traits

« Exposure to news about politics

« Exposure to news about sports

« Exposure to news about science and technology

2. Communication traits:
« Use of social media

« Use of instant messaging

« Use of e-mails

3. Entertainment traits:

» Use of video platforms (YouTube, Vimeo, Twitch)

 Use of audio streaming (Spotify, Audible, Apple podcast)
» Use of TV/Movie streaming (Netflix, BBC online)




THIS STUDY

The measurements

Survey questions

More specifically, on average, how much time per day do you spend on the Internet reading news and articles...
« MC4 1. ... about politics and current affairs?

« MC4_1 HH. Hours: [SMALL NUMERIC OPEN BOX] MC4_1 MM. Minutes: [SMALL NUMERIC OPEN]




THIS STUDY

The measurements

1. Survey questions

2. Web tracking data

Characteristics

Metric
List of traces

List of media

Top media

Information
Exposure

Time threshold

Devices

Tracking period

My choices

Minutes

Tranco
All

Those identified as specific concept

1 second
All devices (with or without app)
31 days




THIS STUDY

The measurements

1. Survey questions

— T use the log of these measures

2. Web tracking data

-
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Correlation matrix opp
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RESULTS

#1 News: quality estimates

Survey Web tracking
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RESULTS

#1 News: quality estimates

Survey Web tracking
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RESULTS

#2 Communication: quality estimates

Survey Web tracking
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RESULTS

#3 Entertainment: quality estimates

Survey Web tracking
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RESULTS

#3 Entertainment: quality estimates

Survey Web tracking
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Take-home messages

« Results put into question the measurement quality of web tracking measurements

« Some concepts are measures very accurately: communication and video streaming

EE) Variance explained by trait: +/- 80%

« While others are extremely off: news media exposure and some entertainment

BE) Variance explained by trait: 12-39% !!!
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« Some concepts are measures very accurately: communication and video streaming

EE) Variance explained by trait: +/- 80%

« While others are extremely off: news media exposure and some entertainment

BE) Variance explained by trait: 12-39% !!!

f

Surveys, on the other hand, perform acceptably well. They also struggle more
with news, but their quality is never below .50 and generally around .70
(agrees w/ Alwin)




CONCLUSIONS

Take-home messages

« Results put into question the measurement quality of web tracking measurements

« Some concepts are measures very accurately: communication and video streaming

Even if surprising, some of these results make
logical sense when we think about the theory of |
the potential error causes of web tracking data!

f

Surveys, on the other hand, perform acceptably well. They also struggle more
with news, but their quality is never below .50 and generally around .70
(agrees w/ Alwin)




CONCLUSIONS

The limits of this approach

« VERY preliminary results...take with a pinch of salt

 We need to think much more about the MTMM models used, how to fine tune them, and their
limitations

Is it biased towards surveys?

Is it of any value if surveys and web tracking do not measure the same to start with?
True score model??

Differential measurement errors!
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Questions?
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